Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Cell Biosci ; 14(1): 30, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444042

RESUMO

Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic.

2.
Nanomaterials (Basel) ; 14(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38535679

RESUMO

Biomimetic scaffolds imitate native tissue and can take a multidimensional form. They are biocompatible and can influence cellular metabolism, making them attractive bioengineering platforms. The use of biomimetic scaffolds adds complexity to traditional cell cultivation methods. The most commonly used technique involves cultivating cells on a flat surface in a two-dimensional format due to its simplicity. A three-dimensional (3D) format can provide a microenvironment for surrounding cells. There are two main techniques for obtaining 3D structures based on the presence of scaffolding. Scaffold-free techniques consist of spheroid technologies. Meanwhile, scaffold techniques contain organoids and all constructs that use various types of scaffolds, ranging from decellularized extracellular matrix (dECM) through hydrogels that are one of the most extensively studied forms of potential scaffolds for 3D culture up to 4D bioprinted biomaterials. 3D bioprinting is one of the most important techniques used to create biomimetic scaffolds. The versatility of this technique allows the use of many different types of inks, mainly hydrogels, as well as cells and inorganic substances. Increasing amounts of data provide evidence of vast potential of biomimetic scaffolds usage in tissue engineering and personalized medicine, with the main area of potential application being the regeneration of skin and musculoskeletal systems. Recent papers also indicate increasing amounts of in vivo tests of products based on biomimetic scaffolds, which further strengthen the importance of this branch of tissue engineering and emphasize the need for extensive research to provide safe for humansbiomimetic tissues and organs. In this review article, we provide a review of the recent advancements in the field of biomimetic scaffolds preceded by an overview of cell culture technologies that led to the development of biomimetic scaffold techniques as the most complex type of cell culture.

3.
Environ Pollut ; 345: 123445, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325504

RESUMO

Exposure to bisphenols has been found to have adverse effects on male reproductive function in animals. Human exposure to bisphenols is widespread. Bisphenol A (BPA) and its analogues, including bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF) are utilized in various consumer products such as food contact materials and dental resins. The effects of these compounds on male fertility and spermatogenesis are unclear and findings from human studies are inconsistent. In this cross-sectional study, we evaluated the influence of BPA, BPS, BPF, BPAF (BPs) measured in semen on number of spermatozoa, total motility, progressive motility, morphology, and DNA fragmentation. We also examined the association of bisphenols (BPs) exposure with patients' occupation. A total of 358 patients aged 17-62 years with BMI 18-42 were included in the study from 2019 to 2021. BPs were extracted using solvent extraction followed by preconcentration step and determined by high-performance liquid chromatography and tandem mass spectrometry (LC/MSMS). Bisphenols were detected in 343 from 349 analysed samples (98.3% of all the samples). In 6 samples, the concentration of all BPs was under the limit of detection and in 20 samples under the limit of quantification. We did not find a statistically significant relationship between occupation and BPs. However, we observed significant correlations between the concentration of BPA and a lower motility and normal morphology. For BPS, a significant correlation with a lower ejaculate volume and a lower total sperm count was found. BPF and BPAF were detected only in 14.3% and 23.9% of samples, respectively. For BPF and BPAF, no significant correlations with spermiogram parameters were observed. Our results show that BPs are widespread in the male population (more than 90% of analysed samples), independently of an occupation and in case of BPA and BPS having a negative impact on spermiogram parameters.


Assuntos
Compostos Benzidrílicos , Fluorocarbonos , Fenóis , Sêmen , Animais , Humanos , Masculino , Estudos Transversais , República Tcheca , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/análise
4.
Cells ; 13(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334666

RESUMO

A disturbance of the structure of the aortic wall results in the formation of aortic aneurysm, which is characterized by a significant bulge on the vessel surface that may have consequences, such as distention and finally rupture. Abdominal aortic aneurysm (AAA) is a major pathological condition because it affects approximately 8% of elderly men and 1.5% of elderly women. The pathogenesis of AAA involves multiple interlocking mechanisms, including inflammation, immune cell activation, protein degradation and cellular malalignments. The expression of inflammatory factors, such as cytokines and chemokines, induce the infiltration of inflammatory cells into the wall of the aorta, including macrophages, natural killer cells (NK cells) and T and B lymphocytes. Protein degradation occurs with a high expression not only of matrix metalloproteinases (MMPs) but also of neutrophil gelatinase-associated lipocalin (NGAL), interferon gamma (IFN-γ) and chymases. The loss of extracellular matrix (ECM) due to cell apoptosis and phenotype switching reduces tissue density and may contribute to AAA. It is important to consider the key mechanisms of initiating and promoting AAA to achieve better preventative and therapeutic outcomes.


Assuntos
Aneurisma da Aorta Abdominal , Masculino , Humanos , Feminino , Idoso , Aneurisma da Aorta Abdominal/metabolismo , Aorta/metabolismo , Citocinas/metabolismo , Fenótipo , Apoptose/genética
5.
Stem Cell Rev Rep ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372877

RESUMO

Epithelial-mesenchymal transition (EMT) is a crucial process with significance in the metastasis of malignant tumors. It is through the acquisition of plasticity that cancer cells become more mobile and gain the ability to metastasize to other tissues. The mesenchymal-epithelial transition (MET) is the return to an epithelial state, which allows for the formation of secondary tumors. Both processes, EMT and MET, are regulated by different pathways and different mediators, which affects the sophistication of the overall tumorigenesis process. Not insignificant are also cancer stem cells and their participation in the angiogenesis, which occur very intensively within tumors. Difficulties in effectively treating cancer are primarily dependent on the potential of cancer cells to rapidly expand and occupy secondarily vital organs. Due to the ability of these cells to spread, the concept of the circulating tumor cell (CTC) has emerged. Interestingly, CTCs exhibit molecular diversity and stem-like and mesenchymal features, even when derived from primary tumor tissue from a single patient. While EMT is necessary for metastasis, MET is required for CTCs to establish a secondary site. A thorough understanding of the processes that govern the balance between EMT and MET in malignancy is crucial.

6.
BMC Nephrol ; 24(1): 380, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124072

RESUMO

Renal cell carcinoma (RCC), a prevalent form of renal malignancy, is distinguished by its proclivity for robust tumor proliferation and metastatic dissemination. Long non-coding RNAs (lncRNAs) have emerged as pivotal modulators of gene expression, exerting substantial influence over diverse biological processes, encompassing the intricate landscape of cancer development. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), an exemplar among lncRNAs, has been discovered to assume functional responsibilities within the context of RCC. The conspicuous expression of MALAT-1 in RCC cells has been closely linked to the advancement of tumors and an unfavorable prognosis. Experimental evidence has demonstrated the pronounced ability of MALAT-1 to stimulate RCC cell proliferation, migration, and invasion, thereby underscoring its active participation in facilitating the metastatic cascade. Furthermore, MALAT-1 has been implicated in orchestrating angiogenesis, an indispensable process for tumor expansion and metastatic dissemination, through its regulatory influence on pro-angiogenic factor expression. MALAT-1 has also been linked to the evasion of immune surveillance in RCC, as it can regulate the expression of immune checkpoint molecules and modulate the tumor microenvironment. Hence, the potential utility of MALAT-1 as a diagnostic and prognostic biomarker in RCC emerges, warranting further investigation and validation of its clinical significance. This comprehensive review provides an overview of the diverse functional roles exhibited by MALAT-1 in RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , RNA Longo não Codificante , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proliferação de Células/genética , Prognóstico , Linhagem Celular Tumoral , Microambiente Tumoral/genética
7.
Cells ; 12(21)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37947637

RESUMO

It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo
8.
Mol Neurobiol ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932544

RESUMO

Ischemic stroke, which occurs due to the occlusion of cerebral arteries, is a common type of stroke. Recent research has highlighted the important role of long non-coding RNAs (lncRNAs) in the development of cerebrovascular diseases, specifically ischemic stroke. Understanding the functional roles of lncRNAs in ischemic stroke is crucial, given their potential contribution to the disease pathology. One noteworthy lncRNA is X-inactive specific transcript (XIST), which exhibits downregulation during the early stages of ischemic stroke and subsequent upregulation in later stages. XIST exert its influence on the development of ischemic stroke through interactions with multiple miRNAs and transcription factors. These interactions play a significant role in the pathogenesis of the condition. In this review, we have provided a comprehensive summary of the functional roles of XIST in ischemic stroke. By investigating the involvement of XIST in the disease process, we aim to enhance our understanding of the mechanisms underlying ischemic stroke and potentially identify novel therapeutic targets.

9.
Clin. transl. oncol. (Print) ; 25(11): 3101-3121, 11 nov. 2023.
Artigo em Inglês | IBECS | ID: ibc-226837

RESUMO

Circular RNAs (circRNAs) as small non-coding RNAs with cell, tissue, or organ-specific expression accomplish a broad array of functions in physiological and pathological processes such as cancer development. Angiogenesis, a complicated multistep process driving a formation of new blood vessels, speeds up tumor progression by supplying nutrients as well as energy. Abnormal expression of circRNAs reported to affect tumor development through impressing angiogenesis. Such impacts are introduced as constant with different tumorigenic features known as “hallmarks of cancer”. In addition, deregulated circRNAs show possibilities to prognosis and diagnosis both in the prophecy of prognosis in malignancies and also their prejudice from healthy individuals. In the present review article, we have evaluated the angiogenic impacts and anti-angiogenic managements of circRNAs in human cancers (AU)


Assuntos
Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Carcinogênese , Imunoterapia , Prognóstico
10.
J Cell Commun Signal ; 17(4): 1203-1217, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870615

RESUMO

Long non-coding RNAs (lncRNAs) are non-protein coding transcripts that are longer than 200 nucleotides in length. LncRNAs are implicated in gene expression at the transcriptional, translational, and epigenetic levels, and thereby impact different cellular processes including cell proliferation, migration, apoptosis, angiogenesis, and immune response. In recent years, numerous studies have demonstrated the significant contribution of lncRNAs to the pathogenesis and progression of various diseases, such as stroke, heart disease, and cancer. Further investigations have shown that lncRNAs have altered expression patterns in ocular tissues and cell lines during pathological conditions. The pathogenesis of various ocular diseases, including glaucoma, cataract, corneal diseases, proliferative vitreoretinopathy, diabetic retinopathy, and retinoblastoma, is influenced by the involvement of specific lncRNAs which play a critical role in the development and progression of these diseases. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a well-researched lncRNA in the context of ocular diseases, which has been shown to exert its biological effects through several signaling pathways and downstream targets. The present review provides a comprehensive summary of the molecular mechanisms underlying the biological functions and roles of MALAT1 in ocular diseases.

11.
Clin. transl. oncol. (Print) ; 25(10): 2812-2831, oct. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-225062

RESUMO

Long non-coding RNAs (lncRNAs) are involved the progression of cancerous and non-cancerous disorders via different mechanism. FTX (five prime to xist) is an evolutionarily conserved lncRNA that is located upstream of XIST and regulates its expression. FTX participates in progression of various malignancy including gastric cancer, glioma, ovarian cancer, pancreatic cancer, and retinoblastoma. Also, FTX can be involved in the pathogenesis of non-cancerous disorders such as endometriosis and stroke. FTX acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-186, miR-200a-3p, miR-215-3p, and miR-153-3p to regulate the expression of their downstream target. FTX by targeting various signaling pathways including Wnt/β-catenin, PI3K/Akt, SOX4, PDK1/PKB/GSK-3β, TGF-β1, FOXA2, and PPARγ regulate molecular mechanism involved in various disorders. Dysregulation of FTX is associated with an increased risk of various disorders. Therefore, FTX and its downstream targets may be suitable biomarkers for the diagnosis and treatment of human malignancies. In this review, we summarized the emerging roles of FTX in human cancerous and non-cancerous cells (AU)


Assuntos
Humanos , Feminino , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição SOXC/metabolismo , Transdução de Sinais/genética
12.
Cells ; 12(18)2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37759515

RESUMO

Healing of dense regular connective tissue, due to a high fiber-to-cell ratio and low metabolic activity and regeneration potential, frequently requires surgical implantation or reconstruction with high risk of reinjury. An alternative to synthetic implants is using bioscaffolds obtained through decellularization, a process where the aim is to extract cells from the tissue while preserving the tissue-specific native molecular structure of the ECM. Proteins, lipids, nucleic acids and other various extracellular molecules are largely involved in differentiation, proliferation, vascularization and collagen fibers deposit, making them the crucial processes in tissue regeneration. Because of the multiple possible forms of cell extraction, there is no standardized protocol in dense regular connective tissue (DRCT). Many modifications of the structure, shape and composition of the bioscaffold have also been described to improve the therapeutic result following the implantation of decellularized connective tissue. The available data provide a valuable source of crucial information. However, the wide spectrum of decellularization makes it important to understand the key aspects of bioscaffolds relative to their potential use in tissue regeneration.


Assuntos
Ácidos Nucleicos , Medicina Regenerativa , Humanos , Diferenciação Celular , Implantação do Embrião , Neovascularização Patológica
13.
Front Nutr ; 10: 1225233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37743926

RESUMO

In vitro meat production presents a potential viable alternative for meat consumption, which could provide the consumer with a product indistinguishable from the original, with very similar nutritional and culinary values. Indeed, the alternative products currently accessible often lack comparable nutritional value or culinary attributes to their animal-derived counterparts. This creates challenges for their global acceptance, particularly in countries where meat consumption holds cultural significance. However, while cultured meat research has been progressing rapidly in recent years, some significant obstacles still need to be overcome before its possible commercialization. Hence, this review summarizes the most current knowledge regarding the history of cultured meat, the currently used cell sources and methods used for the purpose of in vitro meat production, with particular focus on the role of bioreactors, scaffolds and microcarriers in overcoming the current obstacles. The authors put the potential microcarrier and scaffold-based solutions in a context, discussing the ways in which they can impact the way forward for the technology, including the use of considering the potential practical and societal barriers to implementing it as a viable food source worldwide.

14.
Life Sci ; 332: 122126, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769803

RESUMO

Small extracellular vesicles (sEVs) are a type of membranous vesicles that can be released by cells into the extracellular space. The relationship between sEVs and non-coding RNAs (ncRNAs) is highly intricate and interdependent. This symbiotic relationship plays a pivotal role in facilitating intercellular communication and holds profound implications for a myriad of biological processes. The concept of sEVs and their ncRNA cargo as a "Trojan Horse" highlights their remarkable capacity to traverse biological barriers and surreptitiously deliver their cargo to target cells, evading detection by the host-immune system. Accumulating evidence suggests that sEVs may be harnessed as carriers to ferry therapeutic ncRNAs capable of selectively silencing disease-driving genes, particularly in conditions such as cancer. This approach presents several advantages over conventional drug delivery methods, opening up new possibilities for targeted therapy and improved treatment outcomes. However, the utilization of sEVs and ncRNAs as therapeutic agents raises valid concerns regarding the possibility of unforeseen consequences and unintended impacts that may emerge from their application. It is important to consider the fundamental attributes of sEVs and ncRNAs, including by an in-depth analysis of the practical and clinical potentials of exosomes, serving as a representative model for sEVs encapsulating ncRNAs.

15.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629120

RESUMO

Wharton's jelly (WJ) contains mesenchymal stem cells (MSCs) exhibiting broad immunomodulatory properties and differentiation capacity, which makes them a promising tool for cellular therapies. Although the osteogenic, chondrogenic and adipogenic differentiation is a gold standard for proper identification of MSCs, it is important to elucidate the exact molecular mechanisms governing these processes to develop safe and efficient cellular therapies. Umbilical cords were collected from healthy, full-term deliveries, for subsequent MSCs (WJ-MSCs) isolation. WJ-MSCs were cultivated in vitro for osteogenic, chondrogenic, adipogenic and neurogenic differentiation. The RNA samples were isolated and the transcript levels were evaluated using NovaSeq platform, which led to the identification of differentially expressed genes. Expression of H19 and SLPI was enhanced in adipocytes, chondrocytes and osteoblasts, and NPPB was decreased in all analyzed groups compared to the control. KISS1 was down-regulated in adipocytes, chondrocytes, and neural-like cells compared to the control. The most of identified genes were already implicated in differentiation of MSCs; however, some genes (PROK1, OCA2) have not yet been associated with initiating final cell fate. The current results indicate that both osteo- and adipo-induced WJ-MSCs share many similarities regarding the most overexpressed genes, while the neuro-induced WJ-MSCs are quite distinctive from the other three groups. Overall, this study provides an insight into the transcriptomic changes occurring during the differentiation of WJ-MSCs and enables the identification of novel markers involved in this process, which may serve as a reference for further research exploring the role of these genes in physiology of WJ-MSCs and in regenerative medicine.


Assuntos
Hormônios Gastrointestinais , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina , Geleia de Wharton , Humanos , Condrócitos , Adipócitos , Diferenciação Celular/genética , Osteoblastos , Fatores Imunológicos
16.
Endocrine ; 82(3): 681-694, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572199

RESUMO

PURPOSE: Steroid hormone secretion is one of the key functions of granulosa cells (GCs). Resveratrol is a natural polyphenol, known for its beneficial health effects, such as improving reproductive health. However, its application is limited due to poor bioavailability. The methoxy derivative of resveratrol (DMU-212) was demonstrated to be more lipophilic, and therefore of greater bioavailability. However, since the addition of methoxy groups to the stilbene scaffold was found to make the molecule insoluble in water, DMU-212 was loaded into liposomes. This study aimed to evaluate how the liposomal formulation of DMU-212 (lipDMU-212) alters estradiol and progesterone secretion of human ovarian GCs in a primary three-dimensional cell culture model. METHODS: DMU-212-loaded liposomes were prepared by thin film hydration followed by extrusion. Cell viability was measured after exposure of GCs spheroids to the liposomal formulation of DMU-212 using CellTiter-Glo® 3D Cell Viability Assay. The secretion of estradiol and progesterone was determined using commercial ELISA kits. RT-qPCR was conducted to analyze the expression of steroidogenesis-related genes. Finally, the western blot technique was used to analyze the effect of lipDMU-212 and FSH treatments on CYP11A1 and HSD3B1 protein levels. RESULTS: lipDMU-212 was found to significantly increase estradiol and progesterone secretion in a dose-dependent manner by enhancing the expression of CYP11A1, HSD3B1, StAR, CYP17A1, CYP19A1, and HSD17B1 genes. We have also shown that lipDMU-212, used alone and in combination with FSH, significantly increased the expression of the HSD3B1 and CYP11A1 proteins in GCs. Furthermore, our study suggests that lipDMU-212 increases FSH activity. CONCLUSIONS: This is the first study to describe the steroidogenic activity of liposomal formulation of DMU-212, possibly through increasing the StAR and CYP19A1 expression. These findings suggest that lipDMU-212 might have a beneficial effect in the treatment of disorders related to estrogen deficiency and hyperandrogenism, such as PCOS.


Assuntos
Progesterona , Estilbenos , Feminino , Humanos , Resveratrol/farmacologia , Resveratrol/metabolismo , Progesterona/farmacologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Lipossomos/metabolismo , Lipossomos/farmacologia , Estilbenos/farmacologia , Estilbenos/metabolismo , Estradiol/farmacologia , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/metabolismo , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/farmacologia
17.
Cell Div ; 18(1): 12, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550786

RESUMO

BACKGROUND: Cell cycle regulation influences the proliferation of granulosa cells and affects many processes related to ovarian folliclular growth and ovulation. Abnormal regulation of the cell cycle can lead to many diseases within the ovary. The aim of this study was to describe the expression profile of genes within granulosa cells, which are related to the formation of the cytoskeleton, organization of cell organelles inside the cell, and regulation of cell division. Established in vitro primary cultures from porcine ovarian follicle granulosa cells were maintained for 48, 96, 144 h and evaluated via microarray expression analysis. RESULTS: Analyzed genes were assigned to 12 gene ontology groups "actin cytoskeleton organization", "actin filament organization", "actin filament-based process", "cell-matrix adhesion", "cell-substrate adhesion", "chromosome segregation", "chromosome separation", "cytoskeleton organization", "DNA integrity checkpoint", "DNA replication initiation", "organelle fision", "organelle organization". Among the genes with significantly changed expression, those whose role in processes within the ovary are selected for consideration. Genes with increased expression include (ITGA11, CNN1, CCl2, TPM2, ACTN1, VCAM-1, COL3A1, GSN, FRMD6, PLK2). Genes with reduced expression inlcude (KIF14, TACC3, ESPL1, CDC45, TTK, CDC20, CDK1, FBXO5, NEK2-NIMA, CCNE2). For the results obtained by microarray expressions, quantitative validation by RT-qPCR was performed. CONCLUSIONS: The results indicated expression profile of genes, which can be considered as new molecular markers of cellular processes involved in signaling, cell structure organization. The expression profile of selected genes brings new insight into regulation of physiological processes in porcine follicular granulosa cells during primary in vitro culture.

18.
Diagnostics (Basel) ; 13(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37568830

RESUMO

The compounds of seminal plasma have great potential as biomarkers of male fertility and can be used as a diagnostic tool for types of azoospermia. Azoospermia occurs in approximately 1% of the male population, and for an effective therapy of this form of male infertility, it is important to distinguish between obstructive and non-obstructive azoospermia. Proteins in seminal plasma can serve as biomarkers for diagnosing azoospermia. Considering the various types of obstructions, a combination of multiple proteins is advisable for diagnostic purposes. In this context, testicular and epididymal proteins are particularly significant, as they are specific to these tissues and typically absent in ejaculate during most obstructions. A combination of multiple biomarkers is more effective than the analysis of a single protein. This group of markers contains TEX101 and ECM1 proteins, combined detections of these two bring a diagnostic output with a high sensitivity and specificity. Similar results were observed for combined detection of TEX101 and SPAG1. The effective using of specific biomarkers from seminal plasma can significantly improve the existing approaches to diagnosis of the causes of male infertility.

19.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511632

RESUMO

Exosomal regulation is intimately involved in key cellular processes, such as migration, proliferation, and adhesion. By participating in the regulation of basic mechanisms, extracellular vesicles are important in intercellular signaling and the functioning of the mammalian reproductive system. The complexity of intercellular interactions in the ovarian follicle is also based on multilevel intercellular signaling, including the mechanisms involving cadherins, integrins, and the extracellular matrix. The processes in the ovary leading to the formation of a fertilization-ready oocyte are extremely complex at the molecular level and depend on the oocyte's ongoing relationship with granulosa cells. An analysis of gene expression from material obtained from a primary in vitro culture of porcine granulosa cells was employed using microarray technology. Genes with the highest expression (LIPG, HSD3B1, CLIP4, LOX, ANKRD1, FMOD, SHAS2, TAGLN, ITGA8, MXRA5, and NEXN) and the lowest expression levels (DAPL1, HSD17B1, SNX31, FST, NEBL, CXCL10, RGS2, MAL2, IHH, and TRIB2) were selected for further analysis. The gene expression results obtained from the microarrays were validated using quantitative RT-qPCR. Exosomes may play important roles regarding intercellular signaling between granulosa cells. Therefore, exosomes may have significant applications in regenerative medicine, targeted therapy, and assisted reproduction technologies.


Assuntos
Células da Granulosa , Folículo Ovariano , Feminino , Suínos , Animais , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Ovário/metabolismo , Proliferação de Células/genética , Mamíferos
20.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37373173

RESUMO

Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) exhibit multilineage differentiation potential, adhere to plastic, and express a specific set of surface markers-CD105, CD73, CD90. Although there are relatively well-established differentiation protocols for WJ-MSCs, the exact molecular mechanisms involved in their in vitro long-term culture and differentiation remain to be elucidated. In this study, the cells were isolated from Wharton's jelly of umbilical cords obtained from healthy full-term deliveries, cultivated in vitro, and differentiated towards osteogenic, chondrogenic, adipogenic and neurogenic lineages. RNA samples were isolated after the differentiation regimen and analyzed using an RNA sequencing (RNAseq) assay, which led to the identification of differentially expressed genes belonging to apoptosis-related ontological groups. ZBTB16 and FOXO1 were upregulated in all differentiated groups as compared to controls, while TGFA was downregulated in all groups. In addition, several possible novel marker genes associated with the differentiation of WJ-MSCs were identified (e.g., SEPTIN4, ITPR1, CNR1, BEX2, CD14, EDNRB). The results of this study provide an insight into the molecular mechanisms involved in the long-term culture in vitro and four-lineage differentiation of WJ-MSCs, which is crucial to utilize WJ-MSCs in regenerative medicine.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Transcriptoma , Condrócitos , Diferenciação Celular/genética , Adipócitos , Apoptose/genética , Osteoblastos , Células Cultivadas , Proteínas do Tecido Nervoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...